
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

seL4 Summit 2019

seL4 Drivers for Trustworthy Devices:

towards capabilities from silicon thru apps

stu.card@critical.com

Alice and the Red Queen running hand in hand

illustration by John Tenniel, 1871, now Public Domain

https://commons.wikimedia.org/wiki/File:Alice_queen2.jpg

This work was performed as CTI IR&D plus SBIR/STTR efforts with

Syracuse University, Genode Labs & Data61, supported by

DARPA, AFRL/RI, AFOSR & OSD. The views, opinions and/or

findings expressed are those of the authors and should not be

interpreted as representing the official views or policies of the DoD

or the U.S. Gov’t. Cleared by DARPA as DISTAR case 29869.

user -> developer -> researcher story with

intentionally ambiguous title

● “devices”

● “trustworthy”

● “drivers”: broad issues

● motivating example applications

● prototype gateway stack components

● Genode / seL4 verification

● Syracuse Assured Boot Loader Executive

● “drivers”: device driver software

● “drivers”: lessons learned

● next steps

our primary objective as / on behalf of users:

return meaningful control of devices and

networks to their proper owners, by enabling

a safe exit from the Red Queen’s race

mailto:stu.card@critical.com
https://commons.wikimedia.org/wiki/File:Alice_queen2.jpg
https://commons.wikimedia.org/wiki/File:Alice_queen2.jpg
https://commons.wikimedia.org/wiki/File:Alice_queen2.jpg

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

“trustworthy”

● not just trusted: a decision to trust a system should be based on evidence

● several dimensions

● Reliable: doesn’t fail in isolation

● Scalable: doesn’t fail just because many are interacting

● Secure: doesn’t fail due to malicious action

● Resilient:

● continues to provide some level of service even if partly broken

● facilitates rapid restoration of full services

● not binary: varying degrees of confidence along each dimension

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

“drivers”: broad issues / aspects

● System

● Protocol

● Software

● Hardware

● Energy/Power: not the microkernel’s problem directly, but e.g. an energy-

draining attack depends on the scheduler to get the time to drain the battery

● User Training: if a user trusts the system to do A, but it has actually been

designed [& verified] to do B…

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

motivating example applications
(we have really worked on 3 of these for clients, 3 as IR&D, and are proposing the rest)

● RANalyzer remote spectrum analyzer (Xilinx Zynq Ultrascale+ ARM based)

● OTT/IPTV mesh Content Delivery Network gateway (AMD x86-64 based)

● blockchain-based cryptocurrency accepting vending machines

● “My Portable Digital Life” private cloud computing product

● multi-core / multi-ISA (e.g. ARM & RISC-V) run-time cross-checking

● run-time safety/security model compliance monitor for safe UAS in shared airspace

● autonomous [cyber-physical] systems w/machine learning & mobile code

● DTN/IP/SDR gateway for B-LOS emergency networking

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

replicating autonomous agents

‘bid’ on

source

objects

sufficient?

transform

put new

objects or

recipes

publish

metadata &

‘ask’

yes

no

• mobile code can migrate nearer data sources

• useful / fit / “profitable” code can proliferate

• each resource is owned by 1 agent

• each agent demands credentials

• each agent follows its own policy

• some agents also learn [utilities]

• resource grants are capabilities

• credential/capability tickets required at each step

• not only data but also code can be transformed (by

human programmers and/or Genetic Programming)

• key issue is certification of transformed code:

credentials of parents do not apply to offspring, but may

influence decision to trust offspring

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

or knock out 2 core links;

this energy distribution

grid is very robust

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

or knock out 2 core links;

this data network also is

very robust (it has the

same structure as the

energy distribution grid,

rotated 60 degrees)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

But what if:

- data switches need energy;

- power switches need data?

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Cascading failures yield

complete collapse of both

separately robust networks,

made fragile by introduced

mutual dependence!

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

● many potential causes of widespread outage

○ cyber attack

○ solar Coronal Mass Ejection

○ nuclear ElectroMagnetic Pulse

○ https://www.whitehouse.gov/presidential-actions/executive-order-

coordinating-national-resilience-electromagnetic-pulses prioritizes

● Our very small company is working unfunded efforts (we need not only

funding but also technical help) to mitigate this existential risk by developing

trustworthy Beyond Line Of Sight wireless gateways

○ WiFi, LTE CBRS, SATCOM, HF

○ local non-volatile storage

○ alternate power sources

● “guerilla” commercial deployment

○ IP Set Top Box (video etc.)

○ other nominal-condition services

● many issues to address

● seL4 helps w/some…

Solar & ham radio equipped Prius;

photo used by permission of

CDR (ret.) Bob Bruninga WB4APR

Wind & solar powered light pole, adaptable as

Delay/Disruption Tolerant Network (DTN) /

Internet Protocol (IP) wireless mesh router

pole; photo used by permission of Colite

Technologies www.colitetech.com

https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses
http://www.colitetech.com/

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

prototype gateway stack components (1 of 3)

● Delay / Disruption Tolerant Network (DTN, RFC

4838 etc.) “Bundle Protocol” message router

● Tahoe – Least Authority File Store

○ k of n distributed storage

○ strongly encrypted

○ capability based access

● Host Identity Protocol (HIP, RFC 4423 etc.)

○ identifier – locator deconflation

○ HI private key is authentication capability

○ IP address binding is location capability

● GNU Radio Software Defined Radio (SDR)

○ XML specified graph -> auto-generated

Python composition of C++ blocks

○ strong security needed for FCC approval

○ natural for decomposing into components

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

prototype gateway stack components (2 of 3)

● component framework

○ VMs each on its own unprivileged VMM

○ or Sculpt natively component-oriented OS

● Genode (see slide after next)

● seL4

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

prototype gateway stack components (3 of 3)

● x86-64 w/Trusted Platform Module (TPM)

○ SABLE trusted/secure boot

○ our current primary prototype

● ARM

○ Xilinx Zynq Ultrascale+ MPSOC -> RFSOC

○ our SDR integration prototypes

○ we got Genode / seL4 running on real ARM

hardware, inc. SabreLite (seL4 reference

platform), rather than just in emulation

○ how-to etc. https://genodl4arm.critical.com/

○ code patches

https://github.com/CriticalTechnologiesInc/g

enode-sel4-arm

● RISC-V

○ MicroSemi/MicroChip PolarFire FPGA SOC

has other strong security features

○ in discussion w/several silicon vendors on

adding Capability Hardware Enhanced RISC

Instructions (CHERI)

https://genodl4arm.critical.com/
https://genodl4arm.critical.com/
https://github.com/CriticalTechnologiesInc/genode-sel4-arm
https://github.com/CriticalTechnologiesInc/genode-sel4-arm
https://github.com/CriticalTechnologiesInc/genode-sel4-arm
https://github.com/CriticalTechnologiesInc/genode-sel4-arm
https://github.com/CriticalTechnologiesInc/genode-sel4-arm
https://github.com/CriticalTechnologiesInc/genode-sel4-arm
https://github.com/CriticalTechnologiesInc/genode-sel4-arm

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Least privilege: capability-based security
Mixed criticality

• construct special-purpose OSes

• isolated components, app-specific TCBs
Dependability

• lightweight (~4 MB)

• account, trade, & track physical resources
Scalability & Cross-Platform

• recursive system structure

• host existing OSes, VMMs

• x86, ARM [TrustZone]
 Open Source Community Support

• source code at GitHub

• several microkernels inc. seL4

• over 100 ready-to-use components

Genode extends seL4 ecosystem &

seL4 handles several issues for Genode, esp.

• memory management

• inter-component communications

• formal foundation for capabilities

TinyCore Linux on Seoul VMM,

MS Windows 7 on VirtualBox;

both concurrently on Genode!

Genode resources dynamically (vs CAmkES

statically) allocated & accessed via capabilities strictly

following process tree

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

DARPA supported work reported last year

● modeled Genode Core’s behavior in the Alloy

language/model checker

● showed that Core maintains authority

confinement and integrity

● Genode caps backed by seL4 endpoint caps

● Syracuse University technical report

https://sable.critical.com/media/extending-sel4-

integrity.pdf

● formal models & proofs

https://github.com/CriticalTechnologiesInc/Geno

deVerified

OSX

VMM VMM VMM

Linux Windows

Core

Init

seL4

XML

Policy

untrusted

trusted

seL4

Genode
Runtime

Application

Genode + seL4: Mixed Trust Verification

https://sable.critical.com/media/extending-sel4-integrity.pdf
https://sable.critical.com/media/extending-sel4-integrity.pdf
https://sable.critical.com/media/extending-sel4-integrity.pdf
https://sable.critical.com/media/extending-sel4-integrity.pdf
https://sable.critical.com/media/extending-sel4-integrity.pdf
https://sable.critical.com/media/extending-sel4-integrity.pdf
https://sable.critical.com/media/extending-sel4-integrity.pdf
https://github.com/CriticalTechnologiesInc/GenodeVerified
https://github.com/CriticalTechnologiesInc/GenodeVerified
https://github.com/CriticalTechnologiesInc/GenodeVerified
https://github.com/CriticalTechnologiesInc/GenodeVerified

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

But what about code that runs before seL4?

● “Yep, that’s one of the things #seL4 can’t protect you against: flaws in software that runs

before #seL4 gets control. ” Gernot Heiser, 2018 NOV 06

https://twitter.com/GernotHeiser/status/1059995358317576192?s=19

● “These are attacks that can compromise the system even before the OS assumes control, eg.

by compromising the boot loader or re-flashing the firmware, even seL4 cannot defend against

attacks that happen before it is running.” (emphasis added) Gernot Heiser, paragraph 11 of

https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/

● “… we assume that in-kernel assembly code is correct, hardware behaves correctly, in-kernel

hardware management (TLB and caches) is correct, and boot code is correct.” (emphasis

added) https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions

https://twitter.com/GernotHeiser/status/1059995358317576192?s=19
https://twitter.com/GernotHeiser/status/1059995358317576192?s=19
https://twitter.com/GernotHeiser/status/1059995358317576192?s=19
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://microkerneldude.wordpress.com/2018/08/23/microkernels-really-do-improve-security/
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions
https://docs.sel4.systems/FrequentlyAskedQuestions#what-are-the-proof-assumptions

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Syracuse Assured Boot Loader Executive (SABLE)
 S/W utilizes H/W “root of trust”

o Trusted Platform Module (TPM chip) with “hardware protected capabilities”
• 24 Platform Configuration Registers (PCRs) into which 160 bit hashes are “extended”

• “seal” critical data (e.g. keys) to trusted state / unseal only in repeat of that state

• SABLE uses both non- & -resettable PCRs to enable nested boot & Flicker

o Dynamic Root of Trust for Measurement (DRTM) processor instructions
• AMD skinit / Intel senter reset system to safe state & “late launch” Secure Loader Block

• code in SLB is measured (hash extended into PCRs), measures & launches other code

• secure boot precludes untrusted code gaining access to sensitive code, data, keys, etc.

• trusted boot enables subsequent local & remote attestation of system configuration

 SABLE written to facilitate formal verification

o Verified once by Syracuse University faculty & students
• correspondence proofs between abstract and executable models of SABLE-unique code

• nearly 4000 total lines of source code, about half in as-yet unverified crypto libraries

• labor intensive; approximately 20-30 Lines of Proof for each Line of Code

o Released as open source in hopes of independent verification & experimentation
• tech reports https://surface.syr.edu/eecs_techreports/182/ & https://surface.syr.edu/eecs_techreports/183/

• source https://github.com/CriticalTechnologiesInc/qemu-tpm-svm & https://github.com/CriticalTechnologiesInc/SABLE

• proofs https://github.com/CriticalTechnologiesInc/SableModel

• configuration instructions, developers notes, etc. https://sable.critical.com/

https://surface.syr.edu/eecs_techreports/182/
https://surface.syr.edu/eecs_techreports/182/
https://surface.syr.edu/eecs_techreports/183/
https://surface.syr.edu/eecs_techreports/183/
https://surface.syr.edu/eecs_techreports/183/
https://github.com/CriticalTechnologiesInc/qemu-tpm-svm
https://github.com/CriticalTechnologiesInc/qemu-tpm-svm
https://github.com/CriticalTechnologiesInc/qemu-tpm-svm
https://github.com/CriticalTechnologiesInc/qemu-tpm-svm
https://github.com/CriticalTechnologiesInc/qemu-tpm-svm
https://github.com/CriticalTechnologiesInc/qemu-tpm-svm
https://github.com/CriticalTechnologiesInc/SABLE
https://github.com/CriticalTechnologiesInc/SABLE
https://github.com/CriticalTechnologiesInc/SABLE
https://github.com/CriticalTechnologiesInc/SableModel
https://github.com/CriticalTechnologiesInc/SableModel
https://sable.critical.com/
https://sable.critical.com/
https://sable.critical.com/

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

C-SIMPL

Monadic Model

C Source

Isabelle/HOL

Formal Proofs
seL4 microkernel itself does not use a conventional heap but

some code running atop seL4 might need one; tools used by

Data61 to verify seL4 need a heap allocator satisfying certain

properties for those tools to be used to verify code using a heap;

we wanted a heap in SABLE also, so wrote one (part of SABLE

open source release), you might find it useful.

We verified our heap allocator using Isabelle/HOL.
Procedure

1. We parse the C source code into a primitive imperative language called C-SIMPL, which precisely models C memory

semantics.

2. We lift the C-SIMPL code into imperative monadic code using the NICTA AutoCorres tool, which automatically proves that

the C-SIMPL code exhibits the same behavior as the abstracted code.

3. We use a Verification Condition Generator to prove Hoare triples over the alloc function.

4. Bugs in the code will prevent us from proving Hoare triples. When this happens, we fix the bug and go back to Step 1.

Verified Properties

• Calls to alloc cannot fail (guaranteed to return).

• Allocator correctly calculates available memory.

• All “free” areas really are.

• alloc() cannot corrupt the heap.

Results: discovered & fixed 2 previously unrecognized vulnerabilities/bugs (integer overflow & improper comparison)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

SABLE Boot loader

Hardware Hardware

seL4 kernel

Genode

VM VM

App App App

● Boot if and only if

○ We can mutually authenticate System and User

○ We are booting a previously “blessed” configuration

● Only capability-based secure boot of which we are aware

○ if TCB measurements wrong, not just “will not complete boot”, but also “cannot complete boot”

○ essential crypto keys derived from: PCR values; operator input; TPM hardware-protected capability operation

○ Full Disk Encryption (FDE) of not only ‘/’ (root) but also ‘/boot’ (kernel, initramfs)

Secure Boot

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

● Trusted Platform Module (TPM) 2.0: tamper-resistant crypto coprocessor w/secure storage

○ “measure”: stored strong crypto hash of a component makes undetectable changes to it infeasible

○ “extend”: chaining together sequences of hash values into PCRs protects entire TCB configuration

● Dynamic Root of Trust for Measurement (DRTM) “late launch” CPU instruction (e.g. AMD skinit)

○ resets [running] system & puts 0 in dynamic PCRs

(only instruction other than hard reset that can force a specific value into a dynamic PCR)

○ measures Secure Loader (SL), extends measurement into specified PCR

○ unconditionally launches SL

● seal(): encrypt data using key & state of designated PCRs

● unseal(): decrypt data using key & state of designated PCRs

how hardware root of trust enables secure & trusted boot

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

o Capability-based

• Not just “will not complete boot”

• But also “cannot complete boot”

o Essential crypto keys derived by TPM hardware operation combining

• PCR values

• Operator input

• TPM private key that cannot escape the TPM hardware

o Full Disk Encryption (FDE)

• Encrypts not only ‘/’ (root)

• Encrypts also ‘/boot’ (kernel, initramfs)

• P. Kogan, “Full disk encryption with LUKS”, http://www.pavelkogan.com/2014/05/23/luks-full-disk-encryption/

o Updated Grub to prompt user to decrypt LUKS volume on boot

 Only capability-based secure boot of which we are aware

 Enables users to know the TCB running Monday is the previously approved TCB that was

running last Friday

SABLE Secure Boot

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Overall SABLE Boot Process (can be further nested)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

XACML/SAML based “AAA”
(Attestation, Authentication, Authorization, Access Control, Attribution, Accounting & Audit,

initially for a distributed repository supporting a publish-subscribe messaging system)

ABLE

On Boot

PCR’s

On Attestation

Late

Launch

Resource

Extend Measurements

Request

Attestation

Request

Quote

Signed

 Quote

XACML

Request

XACML

Response

Provide

Attest.

Info

SABLE

Chrome Extension

+
Chrome Extension

+

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Attestation
● “TPM quote” from a Trusted Platform Module

● Arbitrary set of Platform Configuration Register (PCR) values as they currently

exist in the TPM, subsequent to them being “extended” sequentially with

measurements of TCB elements, plus a nonce, signed by a pseudonymous

Attestation Identity Key (AIK)

● XACML driven attestation process

○ Quote is validated & verified by server Policy Enforcement Point (PEP)

○ After validation & verification, list of binaries comprising the quote are known, which

are then used later on to look up known properties about them. If no properties are

known, user is prompted to provide a URL to a certificate that asserts properties.

○ PEP then forms a request as usual, but now including a list of binary hashes, and

sends to Policy Decision Point (PDP)

○ PDP, by means of a PIP (Policy Information Point) looks up which security properties

are associated with each binary, which in turn is then used to see if a user satisfies

that portion of policy

attestation of trustworthiness

of Damon & Pythias in Greek myth
painting by Eloi-Firmin Féron

lo-res scan of unknown origin,

uploaded 2013, Public Domain,

https://commons.wikimedia.org/w/index.php?

curid=30306878

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Walk the security property evidence certificate tree at access time to determine whether policy is satisfied.

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

“drivers”: device driver software

All know that the paucity of hardware driver software for seL4 is still limiting; our most pressing needs are –

● TPM 2.0

○ need a Virtual TPM for each VM

■ PCR extend operation is sequential

■ does not support branching for multiple concurrent VM-based TCBs

○ beneath that, need a real TPM 2.0 hardware driver for Genode/seL4 framework

○ started by getting Linux tpm2tools running on our initial prototype x86 hardware

○ decided tackling TPM as our 1st device driver was too hard

● network interfaces

○ need hip0 tunnel driver to enable strongly encrypted, mutually authenticated, inter-VM communications

■ Indeed, can hide raw eth0 from VM, force it through hip0 so it can only interact within HIP overlay

○ beneath that, need virtual eth0 driver for VMs

○ beneath that, need real eth0 driver for Genode/seL4

○ decided all these were also too hard for us n00bs ;-)

● PCIe serial card

○ working on it! Hard slogging but learning…

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

“drivers”: lessons learned

● The learning curves of Genode and seL4 are substantial: it took nearly one year for several junior

programmers to get the framework and microkernel running together on x86-64 and separately on ARM.

● Although progress is being made on 64 bit ARM, virtualization on x86-64 and IOMMU with each, it is slow.

● Although progress is slow, code change is rapid, causing bit rot of formerly working configurations.

● What works on an emulator may not work on real hardware (not newly learned, but confirmed).

● What works on a hardware based TPM may not work on a firmware based TPM (likewise).

● Run-time dynamic loading/linking in a microkernel based environment is hard; Genode/CAmkES hybrid?

● She swallowed a spider to catch the fly: seL4 needs a secure bootloader; SABLE needs admin utilities;

probably we need to formally verify the admin utilities as they configure bootable item security?

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Current Transition / Future R&D in Mixed-Trust Systems
● commercial product development clients

○ RANalyzer remote spectrum analyzer (Xilinx Zynq Ultrascale+ ARM based)

○ OTT/IPTV mesh Content Delivery Network gateway (initially AMD x86-64 based)

● IR&D

○ DTN/IP/SDR gateway [for B-LOS emergency networking] described herein

○ blockchain-based cryptocurrency-accepting vending machines (patent expected to issue soon)

○ My Portable Digital Life (see graphic below) [w/cryptocurrency wallet]

● seeking sponsors

○ multi-core / multi-ISA (e.g. ARM & RISC-V) run-time cross-checking

○ run-time safety/security model compliance monitor for safe UAS in shared airspace

○ autonomous cyber-physical systems w/machine learning [& mobile code]

● https://opensrc.critical.com/ has all our open source code, model, proof, docs, etc. releases

● contact us www.critical.com 315-793-0248 stu.card@critical.com

damaged? stolen? tampered? lost? no problem!

rapidly restore hardware,

data & services

https://opensrc.critical.com/
http://www.critical.com/
mailto:stu.card@critical.com

